Because of the widespread existence of noise and data corruption, recovering the true regression parameters with a certain proportion of corrupted response variables is an essential task. Methods to overcome this problem often involve robust least-squares regression, but few methods perform well when confronted with severe adaptive adversarial attacks. In many applications, prior knowledge is often available from historical data or engineering experience, and by incorporating prior information into a robust regression method, we develop an effective robust regression method that can resist adaptive adversarial attacks. First, we propose the novel TRIP (hard Thresholding approach to Robust regression with sImple Prior) algorithm, which improves the breakdown point when facing adaptive adversarial attacks. Then, to improve the robustness and reduce the estimation error caused by the inclusion of priors, we use the idea of Bayesian reweighting to construct the more robust BRHT (robust Bayesian Reweighting regression via Hard Thresholding) algorithm. We prove the theoretical convergence of the proposed algorithms under mild conditions, and extensive experiments show that under different types of dataset attacks, our algorithms outperform other benchmark ones. Finally, we apply our methods to a data-recovery problem in a real-world application involving a space solar array, demonstrating their good applicability.
translated by 谷歌翻译
Partial differential equations (PDEs) are widely used for description of physical and engineering phenomena. Some key parameters involved in PDEs, which represents certain physical properties with important scientific interpretations, are difficult or even impossible to be measured directly. Estimation of these parameters from noisy and sparse experimental data of related physical quantities is an important task. Many methods for PDE parameter inference involve a large number of evaluations of numerical solution of PDE through algorithms such as finite element method, which can be time-consuming especially for nonlinear PDEs. In this paper, we propose a novel method for estimating unknown parameters in PDEs, called PDE-Informed Gaussian Process Inference (PIGPI). Through modeling the PDE solution as a Gaussian process (GP), we derive the manifold constraints induced by the (linear) PDE structure such that under the constraints, the GP satisfies the PDE. For nonlinear PDEs, we propose an augmentation method that transfers the nonlinear PDE into an equivalent PDE system linear in all derivatives that our PIGPI can handle. PIGPI can be applied to multi-dimensional PDE systems and PDE systems with unobserved components. The method completely bypasses the numerical solver for PDE, thus achieving drastic savings in computation time, especially for nonlinear PDEs. Moreover, the PIGPI method can give the uncertainty quantification for both the unknown parameters and the PDE solution. The proposed method is demonstrated by several application examples from different areas.
translated by 谷歌翻译
动态极化控制(DPC)对许多光学应用都是有益的。它使用可调节的波形来执行自动极化跟踪和操作。有效的算法对于在高速下实现无尽的极化控制过程至关重要。但是,基于标准梯度的算法尚未很好地分析。在这里,我们用基于雅各布的控制理论框架对DPC进行建模,该框架与机器人运动学有很多共同点。然后,我们将Stokes矢量梯度的状况作为Jacobian矩阵进行详细分析。我们将多阶段DPC识别为冗余系统,启用具有空空间操作的控制算法。可以找到一种有效的,无复位的算法。我们预计更多定制的DPC算法将在各种光学系统中遵循相同的框架。
translated by 谷歌翻译
我们提出了一种有效的可解释的神经象征模型来解决感应逻辑编程(ILP)问题。在该模型中,该模型是由在分层结构中组织的一组元规则构建的,通过学习嵌入来匹配元规则的事实和身体谓词来发明一阶规则。为了实例化它,我们专门设计了一种表现型通用元规则集,并证明了它们产生的喇叭条件的片段。在培训期间,我们注入了控制的\ PW {gumbel}噪声以避免本地最佳,并采用可解释性 - 正则化术语来进一步指导融合到可解释规则。我们在针对几种最先进的方法上证明我们对各种任务(ILP,视觉基因组,强化学习)的模型进行了验证。
translated by 谷歌翻译
独立的分量分析旨在从它们的线性混合物中尽可能独立地恢复未知组件。这种技术已广泛应用于许多领域,例如数据分析,信号处理和机器学习。在本文中,我们提出了一种新的基于促进基于促进的独立分量分析算法。我们的算法通过引入最大似然估计来填充非参数独立分量分析中的间隙。各种实验与许多目前已知的算法相比验证其性能。
translated by 谷歌翻译
推理,学习和决策的整合是构建更多普通AI系统的关键。作为朝这个方向的一步,我们提出了一种新颖的神经逻辑架构,可以解决电感逻辑编程(ILP)和深增强学习(RL)问题。我们的体系结构通过分配权重来谓词而不是规则来定义一阶逻辑程序的受限但呈现的连续空间。因此,它是完全可分的,可以用梯度下降有效地培训。此外,在与演员批评算法的深度RL设置中,我们提出了一种新颖的高效评论家建筑。与ILP和RL问题的最先进方法相比,我们的命题实现了出色的性能,同时能够提供完全可解释的解决方案和更好地缩放,特别是在测试阶段。
translated by 谷歌翻译
Terahertz频段(0.1---10 THZ)中的无线通信被视为未来第六代(6G)无线通信系统的关键促进技术之一,超出了大量多重输入多重输出(大量MIMO)技术。但是,THZ频率的非常高的传播衰减和分子吸收通常限制了信号传输距离和覆盖范围。从最近在可重构智能表面(RIS)上实现智能无线电传播环境的突破,我们为多跳RIS RIS辅助通信网络提供了一种新型的混合波束形成方案,以改善THZ波段频率的覆盖范围。特别是,部署了多个被动和可控的RIS,以协助基站(BS)和多个单人体用户之间的传输。我们通过利用最新的深钢筋学习(DRL)来应对传播损失的最新进展,研究了BS在BS和RISS上的模拟光束矩阵的联合设计。为了改善拟议的基于DRL的算法的收敛性,然后设计了两种算法,以初始化数字波束形成和使用交替优化技术的模拟波束形成矩阵。仿真结果表明,与基准相比,我们提出的方案能够改善50 \%的THZ通信范围。此外,还表明,我们提出的基于DRL的方法是解决NP-固定光束形成问题的最先进方法,尤其是当RIS辅助THZ通信网络的信号经历多个啤酒花时。
translated by 谷歌翻译
Bounding box regression is the crucial step in object detection. In existing methods, while n-norm loss is widely adopted for bounding box regression, it is not tailored to the evaluation metric, i.e., Intersection over Union (IoU). Recently, IoU loss and generalized IoU (GIoU) loss have been proposed to benefit the IoU metric, but still suffer from the problems of slow convergence and inaccurate regression. In this paper, we propose a Distance-IoU (DIoU) loss by incorporating the normalized distance between the predicted box and the target box, which converges much faster in training than IoU and GIoU losses. Furthermore, this paper summarizes three geometric factors in bounding box regression, i.e., overlap area, central point distance and aspect ratio, based on which a Complete IoU (CIoU) loss is proposed, thereby leading to faster convergence and better performance. By incorporating DIoU and CIoU losses into state-of-the-art object detection algorithms, e.g., YOLO v3, SSD and Faster R-CNN, we achieve notable performance gains in terms of not only IoU metric but also GIoU metric. Moreover, DIoU can be easily adopted into non-maximum suppression (NMS) to act as the criterion, further boosting performance improvement. The source code and trained models are available at https://github.com/Zzh-tju/DIoU.
translated by 谷歌翻译
Unmanned aerial vehicle (UAV) swarms are considered as a promising technique for next-generation communication networks due to their flexibility, mobility, low cost, and the ability to collaboratively and autonomously provide services. Distributed learning (DL) enables UAV swarms to intelligently provide communication services, multi-directional remote surveillance, and target tracking. In this survey, we first introduce several popular DL algorithms such as federated learning (FL), multi-agent Reinforcement Learning (MARL), distributed inference, and split learning, and present a comprehensive overview of their applications for UAV swarms, such as trajectory design, power control, wireless resource allocation, user assignment, perception, and satellite communications. Then, we present several state-of-the-art applications of UAV swarms in wireless communication systems, such us reconfigurable intelligent surface (RIS), virtual reality (VR), semantic communications, and discuss the problems and challenges that DL-enabled UAV swarms can solve in these applications. Finally, we describe open problems of using DL in UAV swarms and future research directions of DL enabled UAV swarms. In summary, this survey provides a comprehensive survey of various DL applications for UAV swarms in extensive scenarios.
translated by 谷歌翻译
Prior works on Information Extraction (IE) typically predict different tasks and instances (e.g., event triggers, entities, roles, relations) independently, while neglecting their interactions and leading to model inefficiency. In this work, we introduce a joint IE framework, HighIE, that learns and predicts multiple IE tasks by integrating high-order cross-task and cross-instance dependencies. Specifically, we design two categories of high-order factors: homogeneous factors and heterogeneous factors. Then, these factors are utilized to jointly predict labels of all instances. To address the intractability problem of exact high-order inference, we incorporate a high-order neural decoder that is unfolded from a mean-field variational inference method. The experimental results show that our approach achieves consistent improvements on three IE tasks compared with our baseline and prior work.
translated by 谷歌翻译